

University of West Attica

School of Health and Care Sciences

Department of Biomedical Sciences

Biomedical methods and Technology in diagnosis

Course Outline

STANDARDS, AUTOMATION AND INFORMATION MANAGEMENT IN CLINICAL LABORATORY

ATHENS 2023

COURSE OUTLINE

(1) GENERAL

SCHOOL	of HEALTH and CARE SCIENCES				
ACADEMIC UNIT	BIOMEDICAL SCIENCES				
LEVEL OF STUDIES	POST GRADUATE				
COURSE CODE	IA3	SEMESTER 2			
COURSE TITLE	Standards, Automation and Information Management in Clinical Laboratory				
INDEPENDED if credits are awarded for lectures,laboratory exercise whole of the course, give credits	DEPENDENT TEACHING ACTIVITIES arded for separate components of the course, e.g. ry exercises, etc. If the credits are awarded for the urse, give the weekly teaching hours and the total			WEEKLY TEACHING HOURS	
	Theoretical and laborato	ry lessons	lessons 4 8		
Add rows if necessary. The organization of teaching and the teaching methods used are described in detail at (d).					
COURSE TYPE general background, special background, specialized general knowledge, skills development			Special background		
PREREQUISITE COURSES:			-		
LANGUAGE OF INSTRUCTION and EXAMINATIONS:			Greek		
IS THE COURSE OFFERED TO ERASMUS STUDENTS			-		
COURSE WEBSITE (URL)		https://moodle.uniwa.gr			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The aim of the course is to introduce biomedical scientists to the technologies and methods which manage information produced in the modern clinical laboratory. After the successful completion of the course, the students will:

- get critical knowledge and training in statistical analysis with emphasis on laboratory statistics (calculation of reference values, diagnostic and laboratory sensitivity, ROC curves, etc.) and statistical quality control (introduction to probability theory, distributions, statistical principles of quality control),
- get the necessary statistical knowledge for their own research activity,

- be aware of the trends of modern technology in the biochemical laboratory (modular analytical systems, technological trends, legal framework etc.).
- be familiar with the technology of modern automatic analyzers and acquire skills in Medical Informatics Laboratories (LIS) and (HIS).
- be able to use their knowledge and understanding, and their problem-solving skills to face usual or future problems in the clinical laboratory,
- be able to communicate their conclusions as well as their knowledge both to specialized and non-specialized audiences.
- get the necessary learning skills that allow them to continue their studies in a largely self-sufficient or even autonomous way.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others
Decision-making	Showing social, professional and ethical respons
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinkin
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search, analyze and synthesize data and information using the necessary technologies.
- Work in an interdisciplinary environment.
- Concentration and responsibility for performing laboratory exercises.
- Team work.

(3) SYLLABUS

- 1. Introduction to biomedical technology. History, current and future trends. Examples from biochemical/immunochemical analysts.
- 2. Modern medical diagnostic products (automatic pre-analytical systems and related examples). Visit to a relevant facility.
- 3. Introduction to probability theory.
- 4. Introduction to probability distributions.
- 5. Introduction to statistical quality control.
- Statistical quality control in the clinical laboratory (analytical and other errors, methods of one or several criteria. Theory and exercises of laboratory statistics – introduction to SPSS – descriptive statistics.
- 7. External quality control schemes.
- 8. The use of biological variances in quality control goals.
- 9. The selection of laboratory methods with OPSpecs diagrams.

- 10. Informatics in the laboratory (LIS) and in the health team (HIS). Laboratory statistics theory and exercises the quadrilateral table and its biomedical properties.
- 11. IT in the laboratory (LIS) and in the health team (HIS). Laboratory statistics theory and exercises ROC curves (non-parametric statistics).
- 12. Theory and exercises of laboratory statistics survival curves.
- 13. Laboratory statistics theory and exercises introduction to reliability.

DELIVERY	Face to face teaching, Laboratory education				
Face-to-jace, Distance learning, etc.					
USE OF INFORMATION AND	Use of ICT in teaching, laboratory education				
COMMUNICATIONS TECHNOLOGY	Communication with students, Teaching through video				
Use of ICT in teaching, laboratory education,	and Kahoot tests				
communication with students					
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures with audiovisual	40			
Lectures, seminars, laboratory practice,	media				
fieldwork, study and analysis of bibliography,	Laboratory practice	40			
workshop, interactive teaching, educational	Individual project	40			
visits, project, essay writing, artistic creativity,	Student's study hours	80			
etc.	Course total	200			
The student's study hours for each learning activity are given as well as the hours of non-					
the ECTS					
STUDENT PERFORMANCE	Theory:				
EVALUATION	Multiple choice questionnaires				
Description of the evaluation procedure Language of evaluation, methods of	Short-answer questions				
evaluation, summative or conclusive,	Laboratory				
multiple choice questionnaires, short-answer	Laboratory:				
questions, open- ended questions, problem	Laboratory work				
examination. public presentation. laboratory	 Short-answer questions 				
work, clinical examination of patient, art	Problem solving				
interpretation, other Specifically-defined					
evaluation criteria are given, and if and					
where they are accessible to students.					

(4) TEACHING and LEARNING METHODS - EVALUATION

(5) ATTACHED BIBLIOGRAPHY

- 1. Ehrmayer S The Poor Lab's Guide to the Regulations 2023-2024, Westgard QC Inc, 2023
- 2. Triola M Trila M, Jason R. Biostatistics of Biology and Health Sciences, Broken Hill Publishers, 2021
- 3. Marcello P, Kimbertee G. Biostatistics principles, Parisianos Edition, 2002
- 4. Westgard J. Six Sigma Risk Analysis, Westgard QC Inc, 2011